
UTK FHU(opFiti

Productivity Engineering in the UNIXt Environment

MS
q~'j'

CJAn Advanced Silicon Compiler in Prolog

Technical Report

S. L. Graham
Principal Investigator

(415) 642-2059

"The views and conclusions contained in this document are those of the authors and
should not be interpreted as representing the official policies, either expressed or implied,
of the Defense Advanced Research Projects Agency or the U.S. Government." 4,

Contract No. N00039-84-C-0089

August 7, 1984 - August 6, 1987

DTIC
Arpa Order No. 4871 UL 2 5 1988

tUNIX is a trademark of AT&T Bell Laboratories

ViiJTMUT1 N AMTEEN A

ApDp o W =WOW

• 1

An Advanced Silicon Compiler in Prolog

William R. Bush, Gino Cheng, Patrick C. McGeer, Alvin M. Despain

Computer Science Division
Department of Electrical Engineering and Computer Science

University of California, Berkeley 94720

.'he Advanced Silicon Compiler in Prolog (ASP) is a domain with an abstract class of idealized elements, or a
full-range synthesis system based on Prolog. It produces sticks-and-elements virtual-grid abstraction of the actual
VLSI masks from instruction set architecture specifications mask layers involved in fabricatable design (for an exam-
written in Prolog. The system is composed of several pie, see Figure 3). This domain encompasses the tradi-
hierarchical components that span behavioral, circuit, and tional tasks of compaction and device-level simulation.
geometric synthesis. While small microprocessors have been These tasks are accomplished by the Sticks-Pack com-
synthesized, ASP is still under development. In general, ponent of ASP. See Figures 4 and 5 for example final lay-
Prolog appears adequate for both specification and imple- out.
mentctien. Clearly there is some interaction between the levels.

No layout generator can ignore the constraints inherent in
1. Introduction technology, such as, for example, the richer connectivity of
- We have two goals with the ASP project. One is to two layers of metal. Similarly, the data path constructor
generate good microprocessor designs rapidly, as a tool for can only use functional units that the module generator
the architectural research being pursued by the Aquarius can generate.
project [I]. The other is to understand the benefits and
liabilities of using Prolog for large software systems in & Viper
general and CAD in particular. Viper generates structural hardware descriptions

This paper describes the approach and components of from instruction-set level specifications written in stan-
the ASP system, and our experience with Prolog, i) dard Prolog. It performs two basic functions. It translates

J Prolog constructs into hardware equivalents, and it creates
2. Decomposition of Silicon Compilation and allocates hardware resources within various con-

A full behavior-to-silicon compiler is a complex under- straints.
taking. We decompose the silicon compilation problem It uses a combination of compiler analysis and
into three abstract problem domains, ordered hierarchi- hardware knowledge. Algorithmic compiler techniques -
cally (see [2] and 131, for other similar decompositions). dependency analysis, register allocation, and dependency-

The top level of our system is the behavioral domain, based scheduling -. are used to produce a basic design with
This level generates a data path (a set of functional units), constraints. Hardware specific heuristics and knowledge
controlled by a finite state machine, from an input about the characteristics of functional units are then used
specification written in Prolog (see Figure 1). Both stan- to generate a design within the constraints.
dard compiler techniques and hardware-specific knowledge Viper operates in four phases: register allocation,
are used in this process. This behavioral synthesis task is translation of Prolog into an RTL-based form, data path
performed by the Viper component of ASP. construction, and structural description generation.

The second level is the circuit or functional domain. The first phase operates on an input specification
The purpose of this domain is to present the behavioral written in Prolog and constrained to a style illustrated in
component with abstract components (for example, see Fig- Figure 1. First, the microprocessor must be a finite state
ure 2). Hence, this level attempts to synthesize and con- machine as indicated by the first clause. Second, the
nect the finite state machine and functional units gen- model of memory is assumed to be external to the
crated by the behavioral level. This level encompasses the microprocessor, and is realized in Prolog with assert and
traditional tasks of state assignment, logic synthesis, retract. The first phase transforms an input specification
transistor sizing, placement and routing, and module gen- into an equivalent Prolog program in which variable refer.
oration. The core of this level is module generation, which ences have been replaced by assertions involving global
is done by the Topolog component. We also have a CMOS data structures that model registers. As with the original
PLA generator called Plague, a transistor sizer named specification, the transformed specification can be executed
Most 141, and a channel router called Char. directly. It also transforms assert and retract into memory

The third level is the geometric domain. The purpose references, while providing a system-defined memory
of this domain is to present the programs of the functional interface.

MAWR Vw.ETVM AMT -njvi~ - -

2

•The second phase converts Prololl goa15 to register program, but this is quite misleading. Since blocks can be

transfers, asigns transfers to FSM states, and produces a anything which shares the characteristics mentioned here,
state transition table. The operations appearing in it is more accurate to describe Topolog as a gate matrix
transfers are Prolog operators, such as '+', not yet bound style layout engine.
to functional unit operations. The schedule of transfers is Topolog has a six stage pipeline. After inputs aremaximally parallel, based only on dependencies between parsed, a preliminary generation of all the blocks is done.
values and not on resource constraints. The blocks are then grouped into rows, and placed within

The third phase produces a constrained data path, rows. During this placement phase, compound blocks are
mapping abstract operators to functional units and minim- expanded into their primitive component blocks. Detailed
iing the connections between units. If the system cannot generation of blocks is done; the blocks are fleshed out into
find an available functional unit it tries to extend the a sticks-and-elements description, and the pins for channel
functionality of an existing one, for example by converting routing are defined. The channel is then routed. Finally
a register used in an increment expression into a counter the package is output. An example is shown in Figure 3,
(providing enabling conditions are met). which is a bit slice derived from the data path description

Knowledge about functional units is packaged in a in Figure 2. Our existing logic blocks are all designed by
aswd o nctin erlaci t o lc er n- the well-known Uehara-Van Cleemput procedure (6]. Thelibrary, which also serves as the interface to lower syn- UVC algorithm has been shown to derive near-minimal-

thesis levels. Each member of the library contains width single-diffusion-strip static CMOS arrays.
knowledge, in the form of Prolog assertions, about when
and how it should be synthesized. This approach is simi- Topolog currently supports four types of blocks: static
lar in spirit to [51, but is not object-oriented in implemen- CMOS and-or-invert gates, domino CMOS gates, pass
tation. Each library member also contains the logic equa- gates and transmission gates. Topolog is designed to sup-
tions and other information necessary for it to be realized port any circuit style or technology that can be expressed
as a circuit, in the style described above. The terms p-side and n-side

The fourth phase generates a structural description refer to p- and n-diffusion regions, reflecting our primary
containing a connected data path and control path. Figure concern with CMOS technology; however, there is no rea-2 presents the data path derived from the specification in son, in principle, to use these regions specifically for these

Figure 1, consisting of named instances of functional unit purposes. One can imagine, for example, using Topolog for
types along with connected input and output buses and NMOS designs using the p-side for the enhancement dev-
control signals. Functional unit implementation is ice. The addition of a new circuit type is quite easy, due
deferred to Topolog. to Prolog's clause-based programming style. The library

routines have so far proved powerful enough to make the
4. Topolog addition of new circuit types almost automatic: the addi-

tion of domino CMOS required only 30 lines of new Prolog
Topolog is the module generator, layout engine, and code.

circuit database manager. It takes in a description of a
circuit to be generated, constraints on the bounding box, 5. Sticks-Pack
and a set of ports, and outputs a sticks-based layout The Sticks-Pack environment consists of a technology
description which can be converted to a fabricatable form The compact that ca ts oc ayethndby te msk-eve desgn nvionmnt, tics-Pck.independent compactor that creates spaced layout and
by the mask-level design environment, Sticks-Pack. simulation files from sticks-and-elements descriptions, a

Topolog combines the functions of a module generator joiner that joins together cells generated by the compactor,
and layout engine in the hope that a combination of these and a simulator that simulates sticks-based cells.
tools may solve problems specific to each. In particular, The Sticks-Pack compactor takes a cell defined in the
the availability of a layout engine permits the module gen- sticks-and-elements representation used by Topolog (see
erators to specify a module as a collection of functional Figure 3), and creates a mask level representation for the
blocks rather than pieces of geometry, which significantly cell. A new compaction technique is employed which is
simplifies the problem of specifying components of a both algorithmic and rule based. An algorithm similar to
module. The module generator is freed from most con- zone refining [71 is used to perform a rough spacing of the
cerns of geometry, routing and placement, secure that the elements. Floor and ceiling profiles for each lsyer of
layout engine will solve the routing and placement prob- material are maintained. Elements from the ceiling are
lem. Similarly, the collection of circuit elements into moved directly across the molten region to the floor, where
modules provides valuable information to those automated spacing requirements are calculated, and diagonal con-
placement tools which either implicitly or explicitly parti- straints are noted. Rules are used to shift the elements to
tion a circuit into connected subcircuita. better fit their environment. For each cell, a connectivity

Topolog is designed around the basic abstraction of a file containings nodal connectivity, resistivity and capaci-
block. A block represents a primitive circuit element. A tance information is generated for the switch-level simula-
block has a p-side and an n-side. Topolog's basic function tor and for the Spice circuit simulator. The Sticks-Pack
is to group blocks into rows, and to route signals between compactor is relatively technology independent. It sup-
the blocks. A single routing channel runs between the p- ports an arbitrary number of layers, and elements such as
ad n-side of any row; a peer bar runs above the p-side of transistors and contacts are defined from a set of primi.

every row, and a ground bar runs beneath the n-side of tives. A design rule file and a set of technology dependent
any row. Odd rows are flipped about the horizontal axis so rules are specified for each technology. --
that power and ground bars may be shared between rows.
It is tempting to consider Topolog as a standard cell layout

_ Dltrbution/
Availnb2.lity Codes

INSPLC~hOvall and/or
N2 Dist Speolal1

3
..

c c M% ,'-Ar11V1V %X JKr"M i
Large layouts In Sticks-Pack are realized by joining On the other hand, without a sophisticated debugger,

small cells together. Leaf cells (cells of the lowest level Prolog, with its failure and backtracking semantics, has
consisting of transistors and wires) are compacted indivi- been hard to debug. Similarly, Prolog code is hard to
dually and constitute the building blocks for larger modify without careful redesign. We have found that
modules. Previous tiler* have either pitchmatched or river these difficulties may be overcome by the use of appropri-
routed cells [8). The joiner program connects signals ate extensions embedded in the language. In particular,
between cells by either pitchmatching or river routing, we have found that the implementation of a data structur-
whichever is more area efficient. The joiner operates in ing package and primitives which simulate backtrackable
the physical domain rather than the virtual grid domfin assignment have made the implementation and
for tighter results. This also allows cells of various virtual modification of Prolog programs much easier.
grid height and widths to be joined.
gId Oheh aom nd ts t7.2. The Use of Prolog for Specification

sProlog i used for specification because of its logical
We have a boolean equation generator that takes the basis and declarative nature 110]. Specifications are exe-

finite state machine description produc.d by Viper and cutable in Prolog, and thus can be sinsulated wiLho-Lt a
does state assignment and generates the equations used by simulator. Since Prolog does not have explicit hardware
Plague. We hope in the future to take advantage of constructs, both hardware structures and parallelism infor-
current logic synthesis work [9]. mation must be derived by the system. The microproces-

Plague is our CMOS PLA generator, which creates sor focus of the system has allowed us to ignore some
AND-OR sticks-and-elements PLA's from boolean equa- specification issues - we are not concerned with the
tiona. specification or synthesis of multichip, asynchronous, bit

serial, or analog designs. For clarity and implementationWe have a left-edge-first channel router, called Char, simplicity we require Prolog specifications to be deter-
for connecting the major blocks of the system, primarily minate (without backtracking); we only implement deter-
the data path and control path. minate FSM's.

In an effort to improve the performance of our Specification in Prolog has turned out well so far, for
designs, we have a Prolog-based transistor sizer name a number of reasons [11].
Most 14], which currently runs standalone, but which will
be integrated with Topolog. (1) Control in Prolog is simple (ignoring backtracking),

and maps easily into hardware. The user's concep-
7. The Use of Prolog tualization and the system's realization are very

similar.The use of Prolog for both spcification and imple- (2) The derivation of information (such as concurrencymentation arose from experience using and implementing constraints and register bindings) that in another
Prolog in both.a compiler and new execution engine. Our language might be explicit has not been difficult.
experience with Prolog in ASP has in general been po(it
tire. (3) Clauses tend to be short and well modularized,

lending themselves to easy translation.
7.1. The Use of Prolog for Implementation (4) Prolog's simple structure and syntax facilitate

We have observed several benefits in using Prolog for automatic generation of Prolog specifications.
implementation.
(1) Prolog's database properties have aided the produc- 8 Conclusions

tion and processing of information. The relations ASP is still being developed. It currently consists of
that the system generates are much better about 10,000 lines of Prolog code. We have so far been
expressed in that form than in the usual compiler surprised at how effective Prolog has been for specification
hash table structures. Prolog itself is therefore the and synthesis. The system has been relatively easy to
database manager for our low-level cell design develop and modify. We hope to use it to produce the next
environment Sticks-Pack, which gives us a simple generation of our Prolog microprocessor engines.
solution to what is, for most systems, a major part
of the silicon compiler design and implementation 9. Acknowledgements
effort. This work was sponsored in part by Defense

(2) Prolog's rule-based environment has made heuris- Advanced Research Projects Agency (DoD) Arpa Order No.
tics easy to implement. Most of the system is in 4871, monitored by Space & Naval Systems Warfare Coin-
fact algorithmic, and a general heuristic approach mand under Contract No. N00039-84-C-0089. We are
has been avoided, but heuristics are used in a few indebted to Carlo Sequin and Glenn Adams, the authors of
local contexts. the Topogen and Topogate programs, of which Topolog is a

(8) Prolog's unification of the concepts of data and pro- direct intellectual descendant [12).
cedure call lets us use module libraries in a natural
way; it also leads to a very simple and elegant
mechanism for user-programmability of (for exam-
ple) our module generator.

4

References 5main tail-recursive run clause
runCAC, PC) :

fetch(PC, P1, OP, X),
[1] 'Aquarius - A High Performance Computing System execute(OP, X, AC, A, P1, P),

for Symbolic/Numeric Applications'; A.M. Despain, ru r(A, P).
Y.N. Patt; COMPCON 85. Ju(,~.

[2) !Synthesizing Circuits from Behavioral Level % instruction fetch clause
Specifications'; W. Rosenstiel, R. Camposano; Corn- fetch(PC, Pi, OP, X) :-
puter- Hardware Description Languages and their meuiC OP, 1),
Applications (CHDL 85 Proceedings); 1985; pp. 391- P1 is PC.+ 1.
403.

131 'OCCAM to CMOS: Experimental Logic Design Sup- % lnstructlon-speclf Ic execute clauses
port System'; T. Mano, F. Maruyama, K. Hayshi, T. execute(halt, - ,- ,.. -I

Kakuda, N. Kawato, T. Uehara; Computer Hardware fall.
Description Languages and their Applications (CHDL execute(add, 1, AC, A, PC, PC) :- ,
85 Proceedings), 1985. mem(X, T),

[4] 'Delay Reduction Using Simulated Annealing', J. A is2 T* AC.
Pincus, A.M. Despain; 23rd Design Automation execute(stor,X, AC, AC,PC, PC)
Conference, 1986. mem(X,)J, I,

151 'Using Bottom-Up Design Techniques in the Syn- arerat(mem(X, A))
thesis of Digital Hardware from Abstract Behavioral assecut e (XA, AC)PP) -!

Descriptions'; M.C. McFarland; 23rd Design Automa- asscu etr(ACm(, AC)C)

lion onfernce, 986.execute(brn ,X, AC, AC,PC, X
(6] 'Optimal Layout of CMOS Functional Arrays; T. AC (0, 1.

Ushara, W. van Cleemput; IEEE Transactions on execute(brn ,X, AC, AC,PC, PC)

CAD, 1981.
[7] 'wo Dimensional Compaction by Zone Refining'; H. Figure 1: A Simple Microprocessor Specification

Shin, A. Sangiovanni-Vincentelli, C. Sequin; 23rd
Design A "utomation Conference, 1986. functionalUnit(regAC,reg,

[8] 'Virtual Grid Symbolic Layout', N. Weste, 18th [bus3],(bus2],(regACFn,clock],[regACsign]).
Design Automation Conference, 1981. fu~nctionalUnit(regPC,reg,

[9] 'Efficient, Stable Algebraic Operations on Logic [busl],fbusl],(regPCFn,clockJ,[J).
Expressions'; P.C. McGeer; VLSI 87. functionalUnit(regOP,reg,

[10] Programming in Prolog; W.F. Clocksin, C.S. Mellish; [ntlnaultrg,[regP,clcj[)
Springer-Verlag, 1981. [bcioaUnit],ebus,regl,cok,)

[111 'Experience with Prolog as a Hardware Specification flunctional~lnit(adderl,adder,
Language'; W.R. Bush, G.Y. Cheng, P.C. McGeer, [busl,bus2],[bus3),[adderlCin],[]).
A.M. Despain;- Symposium on Logic Programming, functionalUnit~memAR,reg,
1987. (bushj,[(J, femARFn,clockj, [1).

[12] 'Design and Layout Generation at the Symbolic flunctionalUnit(memDR,reg,
Level'; C.H. Sequin; in Proceedings of the Summer [bus2j,[memDRdBus],fneDRFn,clock)],7).
School on VLSI Tools and Applications; W. Fichtner functionalUnit(memflRdecoder ,decoder,
and M. Morf, editors, Kluwer Academic Publishers, [memDRdBu3] ,[busi ,bus2] , [neDRDecode , [I).
1986.

Figure 2: The Symbolic Data Path

ctfploI Window: -753 232S# -359 254511~f --- Semi.: I micron, is 9.6#2 Inchesg (51x1

Figure 3: A Sticks-Form Data Path Bit Slice

1111101! Oil 'llI

cttplstO Vindow, IF 182688 6 132065-- SC&103 1 NicrOin If 9.955 lnch~g (127K)

.4r

Figure 5: The Controfling PLA Layout

~N_/

j 1

